
Towards ACID scalable PostgreSQL
with partitioning and logical replication

Arseny Sher / Anastasia Lubennikova



I PostgreSQL with horizontally scalable
I Performance – whether the bottleneck is CPU, RAM access or stable storage
I Storage

I Mainly oriented on OLTP workloads
I Preserving ACID transactional semantics
I Providing fault tolerance, ideally – with automatic failover (HA)

The goal

2



Sharding gives scalability. The most straightforward way to get sharding in Postgres is
to combine partitioning with postgres_fdw.

part_0 part_1_fdw

part_1

part_0_fdw

part_0_fdw

part_1_fdw

Partitions

Foreign partitions

parent table

parent table

parent table

Node 1

Node 2 Node 3

FDW connection

Partitioning

Scalability

3



I Hash partitioning, allowing to change number of partitions;
I Partition pruning without checking constraint of every partition;

I Well, currently UPDATE/DELETEs are pruned in range/list partitioning by
exhaustive search, and for hash partitioning not pruned at all.

I Runtime partition pruning;
I Partition-wise joins;
I Foreign keys to partitioned tables;
I Automatic creation of parent indexes on partitions;
I Tuple routing and COPY for FDW (and postgres_fdw) partitions;
I postgres_fdw partition-wise aggregation;
I Something else?

pg_pathman extension has many of these features for PG 10 and 9.6.

Partitioning in PG 11 is cool

4



Main approaches are by hash and by range.
I Hash sharding practically always provides even load of partitions;
I With range sharding, it is easy to skew the load (e.g. if sharding key is timestamp

and most queries work with latest data);

I Range scans over the sharding key are inefficient with hash sharding, unlike in
range sharding

Currently pg_shardman supports only hash sharding.

How to shard

5



Node 1

part_0 part_1

part_2

Node 2

part_4 part_3 

part_5 

Node 3

part_2 part_5 LR LR

Rebalance without resharding; logical replication provides seamless migration.

Regardless of sharding strategy, resharding should be rare.

Rebalance and resharding

6



Splitting partition with range sharding is straightforward.

Hash-partitioning in 11 allows to elegantly split partition into two without touching the
other ones.

remainder 0,
modulus 3

remainder 2,
modulus 3

remainder 1,
modulus 3

remainder 4,
modulus 6

remainder 1,
modulus 6

Resharding by splitting a partition

7



Besides, we can implement well-known consistent hashing technique, allowing to add
new partition taking a bit of data from existing ones, without reshuffling everything.

img source

Resharding in hash case

8

http://blog.carlosgaldino.com/consistent-hashing.html


Among ACID, we should care mostly about A (atomicity) and I (isolation).
I Durability is already handled by Postgres.
I C concerns business logic.

Distributed transactions

9



I Postgres employs MVCC for concurrency control. Transactions get snapshots determining
which data they see; snapshot is basically a list of running transactions: these (and not
yet started) xids are invisible, the rest are visible unless they were aborted.

I For that, array of running transactions is kept in shared memory (procarray).
I Transactions set their xid in procarray when they get it and remove xid when they are

done.

T1 

1 xid

T2 

2 

T3 

3 

T4 

4 
snapshot

T5 

xids < 2 visible, committed
xids 2, 4 invisible, running
xids >= 4 invisible, not started 
during snapshot taking 

5 

Isolation

10



Single global transaction manager assigning xids and snapshots is the most straightforward way
to adapt this for the cluster. This is what e.g. Postgres-XL(C) projects family does.

This is fine for OLAP environment with low transaction rate, but on OLTP workloads GTM
can be a bottleneck. We’d better find a decentralized solution...

img source

GTM

11

https://www.2ndquadrant.com/en/resources/postgres-xl/


Currently, taking snapshot has O(n) complexity where n is number of backends: we
need to copy array of running transactions.
CSN1 is another MVCC implementation which avoids that. With CSN, there is an
ever-increasing atomic CSN counter:

I To get snapshot, current value of the counter is remembered; it is essentially the
snapshot.

I When xact finishes, it increments the counter and writes it to all tuples it had
modified (in practice, xid -> csn map is used)

I Transaction with snapshot (csn value) x sees actions of transaction with CSN y if
x >= y .

1There is a CSN patch into core PG with long history

Commit sequence number (CSN) MVCC
approach

12

https://www.postgresql.org/message-id/flat/CA%2BCSw_tEpJ%3Dmd1zgxPkjH6CWDnTDft4gBi%3D%2BP9SnoC%2BWy3pKdA%40mail.gmail.com


T1 

1 xid

T2 

2 

T3 

3 

T4 

4 
snapshot

T5 

csn is 2 during snapshot 
taking, so xacts with csn 1 
(T1) and csn 2 (T3) are visible

5 

csn
1 2 3 4 5 

Commit sequence number (CSN) MVCC
approach

13



In distributed environment, time can be used as CSN. This requires special care as time
is not synced ideally.

Clock-SI prerequisite: time never goes back on a single node during its uptime – easy
to implement and simplifies reasoning. However, time is allowed to go forward with
arbitrary speed on different nodes.

2Stas Kelvich has posted the patch to -hackers

Clock-SI: physical time as CSN2

14

https://www.postgresql.org/message-id/flat/D963AFAB-1FA5-4FE7-A5A2-AC37D728564C%40postgrespro.ru


time

node A 
time=50 

begin_1 
(snap=50)

read_1 
[x=10]

begin_2 
(snap=30)

write_2 
[x=11]

commit_2 
(csn=42)

node B 
time=29 

read_1 
[x=11]

Snapshot 50 of xact 1 is in the future from node B point of view, so it is not stable: x
changed its value.

I First rule of Clock-SI prevents that: transaction with snapshot from the future
must wait until it becomes present in local time.

I Since time is allowed to go with arbitrary speed, we actually can just pull the clocks
hands forward instead of waiting =)

What can go wrong if time is out of sync: case 1

15



time

node A 
time=30 

begin_1 
(snap=30)

read_2 
[x=10]

write_1 
[x=11]

commit_1 
(csn=31)

node B 
time=50 

read_2 
[x=11]

begin_1 
(snap=50)

Coordinator 
csn is 31 commit_1 

(csn=31)

Xact 1 committed with its coordinator CSN 31, modifying existing snapshot 50 of xact
2.

I Second rule of Clock-SI prevents that: CSN must be max of timestamps of all xact
participants, not just coordinator’s.

What can go wrong if time is out of sync: case 2

16



time

node A 
time=30 

begin_1 
(snap=30)

write_1 
[x=11]

node B 
time=30 

read_2 
[y=10]

x=y=10 initially
commit_1 
(csn=31)

read_2 
[x=11]

begin_1 
(snap=32)

commit_1 
(csn=31)

Xact 1 is already committed on A, but not yet committed on B when xact 2 comes into
play: it sees updated x , but not updated y .

I Third rule of Clock-SI addresses this by making commit two-phased: xact is
marked InDoubt on all nodes first and only then committed. Anyone trying to look
at tuples modified by InDoubt xact must wait until its commit/abort.

Third problem: distributed xacts don’t commit
instantly everywhere

17



These 3 rules form Clock-SI; by following them, we get snapshot isolation semantics.
Similar approach is used in CockroachDB and Google Spanner.

There is still one fundamental issue: recency guarantee. In PG, snapshot surely includes
all xacts that were committed before snapshot creation. Here, snapshots generated on
nodes with lagging clocks might not include latest xacts.

I Google Spanner relies on atomic clocks ensuring small skew: all xacts just wait the
max skew (∼ 7ms) after commit before ack’ing transaction to the client.

I CockroachDB relies on hard bound for clock skew too; however, always waiting is
impractical since no special hardware is assumed and max skew can be 100-250ms.
Instead, transaction is restarted if tuple’s csn is in
[snapshot, snapshot +max_skew ] window.

I Node commits suicide (hopefully, fast enough) if it discovers that max clock skew
was exceeded.

We are still not fully covered yet

18

https://www.cockroachlabs.com/blog/living-without-atomic-clocks/


B C

A

COMMIT

committed

COMMIT

aborted
Without 2PC, transaction might end up committed on some nodes and aborted on
others.

Atomicity

19



prepared

B C

A

PREPARE PREPARE

aborted

ok  not ok
B C

AABORT 
 PREPARED

aborted

ABORT 
PREPARED 

aborted

aborted

I Special state PREPARED is introduced, in which node is ready to commit
transaction, but still can abort.

I We first PREPARE xact on all participants, and only then commit.
I PostgreSQL already provides 2PC infrastructure, pg_shardman makes use of it.

Atomicity: 2PC

20



B C

A

committed

committed

prepared

commit or abort?
If coordinator has failed during commit, we won’t be able to learn the status of
transaction and resolve hanging PREPAREs on participants.
We can’t abort xact on node C (probably it was committed on A and B?) and can’t
commit it (probably it is was aborted on A and B?).

Problem: 2PC is a blocking protocol

21



I There are more complex protocols like Paxos Commit. The general idea is to
persist each node PREPARE decision on majority of nodes before committing
anything. If we implement it, we will be able to resolve hanged PREPAREs even if
coordinator is down.

I But... failed coordinator holds data too, so we need to provide redundancy and
failover anyway.

Problem: 2PC is a blocking protocol

22



And if we provide redundancy and failover, we can persist on replicas decision about
transaction fate as well.

committed

committed

B C

A

committed

prepared

A'

B'

committed

C'

prepared

COMMIT 

Problem: 2PC is a blocking protocol

23



I Again, it makes sense to reuse existing infrastructure. Postgres offers physical and
logical replicaion.

I One immediate issue with physical replication is instance placement.

Fault tolerance

24



Either we need redundancy times more nodes, most of them staying idle...

part_20..part_29 

Standby

part_20..part_29 

part_20..part_29 

Standby

part_10..part_19 

Standby

part_10..part_19 

part_10..part_19 

Standby

part_0..part_9 

Standby

part_0..part_9 

Standby

part_0..part_9 
Physical replication

Physical replication

25



Or we need to place multiple PG instances on each physical node, which is ugly.

Physical replication

part_0..part_9 

Standby 

part_0..part_9 

Standby 

part_0..part_9 

part_10..part_19 

Standby 

part_10..part_19 
part_20..part_29 

Standby 

part_20..part_29 

part_20..part_29 

Standby 

part_10..part_19 

Standby 

Physical replication

26



Logical replication

part_0..part_9 

part_20..part_29 part_10..part_19 

part_0..part_9 

part_10..part_19 

part_20..part_29 
part_20..part_29 

part_0..part_9 

part_10..part_19 

I pg_shardman currently provides this, with manual failover

Logical replication

27



Regardless of replication method, there are two important milestones:
I Manual failover: DBA says ’this node has failed’, and replicas are promoted.
I Automatic failover, when cluster does this on its own.

I In practice, this provides HA, because failover is very fast. This allows to bypass
CAP theorem: in CAP, availability means ’live node must successfully answer to any
query’.

Generally, failover involves
I Choosing replica which will be the new master
I Configuring replication from it to the rest of replicas
I Announcing it as a new master to all nodes

Fault tolerance and HA

28



B C

AStopped at 
0/7000F28 

Stopped at 
 0/7000140 

I Easy to handle with physical replication, LSNs are the same
I For logical replication, we need to learn since which LSN to start, by looking at

mappings to old master’s LSN.
I pg_shardman can synchronize replicas, but does it in much more hackish way.

Problem: replicas might be in different states

29



I To get failed node back to the cluster without copying all the data from scratch,
we must be able to rewind latest changes which hadn’t gotten to the next master.

I For physical replication there is pg_rewind utility doing exactly that. For logical
replication... this is yet to be done.

Getting the failed node back

30



Logical replication also complicates 2PC.
I PREPARE must be decoded 3

I Initial tablesync needs some care
With physical replication, 2PC just works across replicas.

3patch in progress

2PC and logical replication

31

https://www.postgresql.org/message-id/flat/CAB7nPqSQPANEwaLm1GU4MYjENrRgetiRCxhWoP-ATQbutWm%2BYw%40mail.gmail.com


I Whenever a bunch of nodes need to reach an agreement on something, there is a
distributed consensus problem solved by algorithms like Paxos.

I More practical algorithms implement replicated state machines approach, giving
fault tolerant distributed log: Raft, Multi-Paxos. Servers apply this log, computing
the same state.

I In Postgres, we already have the log with commands changing the state: WAL. We
can adapt Raft to it and get automatic failover.

I CockroachDB, Google Spanner, MongoDB do something very similar.

Automatic failover

32



As an alternative, instead of building consensus algorithm right into replication code we
can make use of external consensus.

I We need a fault-tolerant store supporting CAS operations on it – systems like
etcd/consul/zookeper provide it. Internally, they still run consensus algorithm
between their nodes. Current cluster conf is stored there and atomically updated.

I It makes easy to store only two copies of data, quorum of data nodes is not needed.
I Easy to handle membership changes.

I Projects Stolon and Patroni implement HA for physical replication in this way.

Automatic failover

33



I No support for DDL (ok, just need to add it).
I Double latency: transaction is not sent to replica until COMMIT is written into

WAL.
I Big transactions are spilled to (and read back from) disk, halving disk throughput

even for one decoder.
I Probably the best way to address these two issues is to teach apply worker to switch

between transactions and send/apply them on the fly, much like in recovery.
Greetings to connection pooling and autonomous transactions.

Some more issues with logical replication

34



I Updates/deletes amplification.
I With logical replication, updates are executed on replicas independently. Indexes

must be traversed for locating tuples and updating indexes themselves on both
master and each replica; this is especially expensive if indexes don’t fit into RAM.
With physical replication, we just know which pages to update.

I Decoding itself eats CPU.
I Each walsender decodes the whole WAL: decoding results are not reused between

walsenders, and uninteresting WAL still needs to be digested. Performance drops
significanly with > 5-10 walsenders.

I Probably we could make backends point to walsenders, which parts of WAL they
need to read...

I This limits the ability to balance the load after failure: less replicas => more work
would fall on each one

More logical replication performance issues

35



With logical replication
I Synchronization after failure and rewind requires some sweating;
I There is no DDL yet;
I 2PC needs special care;
I There are serious performance issues;

Physical replication
I Leads to multiple instances placement on each physical node (probably main

problem here is just ugliness);
I Failover without external daemons is impossible because someone needs to run

pg_basebackup and pg_rewind.

Replication summary

36



I Hash-sharding with native partitioning (slow DML as partitions are not pruned) or
pg_pathman (old version).

I Clock-SI providing distributed snapshot isolation.
I 2PC providing distributed atomicity.
I Redundancy via logical replication with manual failover.

https://github.com/postgrespro/pg_shardman

pg_shardman currently: available to play around

37

https://github.com/postgrespro/pg_shardman


0 2 4 6 8 10 12 14
nodes

0

10000

20000

30000

40000

50000

60000

70000

TP
S

pgbench -N on ec2 c3.2xlarge (8 cores) nodes; scale 10, data in tmpfs,
optimal number of clients

single node, no shardman
pg_shardman, no replication
pg_shardman, redundancy 1, sync replication

Some numbers

38



I Scaling after around 100 nodes will need squats with connection pooling, because
postgres_fdw doesn’t reuse connections between backends: totally we have num of
clients * num of nodes connections on each node.

I While OLTP is mostly fine, OLAP will immediately choke because postgres_fdw
doesn’t support parallel execution yet. Community works hard on this.

I Probably next distant goal for OLAP is reshuffling for efficient joins.
I postgres_fdw currently uses WaitEvenSet API very inefficiently, I’ll post a patch.

Random performance notes

39


